
Preferred Extensions as Minimal Models of
Clark’s Completion Semantics

Mauricio Osorio, Alejandro Santoyo

Universidad de las Américas - Puebla,
Depto. de Actuaŕıa, F́ısica y Matemáticas, Mexico

osoriomauri@googlemail.com, jasrvro@hotmail.com

Abstract. Dung established the connections between several logic pro-
gramming semantics and various argumentation framework semantics.
In this paper we present a characterization of the preferred semantics
of argumentation frameworks (which is defined in terms of a maximal
admissible set w.r.t. set inclusion) in terms of minimal logic models of
Clark’s completion. Additionally, we make use of integer programming
for computing preferred extensions by a method defined by Bell et al.
[3], which translates a logic program into an integer program which in
turn can be solved by an ad hoc solver.

Keywords: Argumentation frameworks, preferred extensions, Clark’s
completion semantics, answer set programming, integer programming.

1 Introduction

Argumentation theory has been a research area in several disciplines such as
logic, psychology, philosophy, linguistics, and legal theory. However, even though
argumentation theory has a long history, it was just until the arrival of Dung’s
seminal paper on abstract argumentation theory [7], when this field attracted
the attention of many researchers.

Particularly, argumentation theory has become an increasingly important
and exciting research topic in Artificial Intelligence (AI). The main purpose of
argumentation theory is to study the fundamental mechanism humans use in
argumentation and to explore ways to implement this mechanism on computers.

Currently formal argumentation research has been strongly influenced by
Dung’s abstract argumentation theory [7]. This approach is mainly oriented to
manage the interaction of arguments by introducing a single structure called
Argumentation Framework (AF). An argumentation framework basically is a
tuple of sets: a set of arguments and a set of disagreements between arguments
called attacks. Indeed an argumentation framework can be regarded as a directed
graph in which the arguments are represented by nodes and the attack relations
are represented by arrows.

In [7], four argumentation semantics were introduced: stable semantics, pre-
ferred semantics, grounded semantics, and complete semantics. The central no-
tion of Dung’s semantics is the acceptability of the arguments. Even though each

57 Research in Computing Science 68 (2013)pp. 57–68



of these argumentation semantics represents different patterns of selection of ar-
guments, all of them are based on the basic concept of admissible set. Informally
speaking, an admissible set presents a coherent and defendable point of view in
a conflict between arguments.

Dung showed that argumentation can be viewed as logic programming with
negation as failure. In this setting, he showed that the sets of arguments which
can be considered as admissible can be regarded as logic models of a given
logic program. This result is of great importance because it introduces a gen-
eral method for generating metainterpreters for argumentation systems and re-
gards argumentation semantics from another point of view in order to identify
non-monotonic reasoning features of them. Following this issue, the preferred
semantics was characterized by the p-stable semantics [12] in [5]. Moreover, the
preferred semantics was characterized by the stable model semantics in [11].

In this work we introduce new results which complete the understanding
of Dung’s semantics in terms of logic programming semantics with negation as
failure. By considering an argumentation framework AF and a uniform mapping
of AF into a logic program ΠAF , we show that the Clarks’s completion minimal
models of ΠAF characterize the preferred extensions of AF , and also use integer
programming fro computing such models.

It is worth mentioning that in section 4 we present some preliminary results
of an ongoing research related to find out if integer programming can be used for
computing any argumentation framework extension. However, even though we
present encouraging results, we still have to be cautious about the conclusions
it is possible to draw from them, that is way the section was called ”Proof of
Concept”.

The rest of the paper is divided as follows: In Section 2, we present a ba-
sic background about logic programming, Clark’s completion semantics, how to
compute the minimal models of Clark’s completion using mixed integer program-
ming, argumentation theory, and how to map an argumentation framework into
a logic program. In Section 3, we present our study about the relationship be-
tween minimal models of Clark’s completion and preferred extensions. In Section
4 we present a proof of concept experiment for computing preferred extensions
using integer programming as part of an ongoing research. In the last section,
we outline our conclusions and future work.

2 Background

In this section, we first define the syntax of a valid program, after that the Clark’s
completion semantics [6] is presented, then the method define by Bell et al. for
computing the Clark’s completion minimal models, then we present some basic
concepts of argumentation theory, and finally how to map an argumentation
framework to a logic program.

58

Mauricio Osorio, Alejandro Santoyo

Research in Computing Science 68 (2013)



2.1 Clark’s Completion

The Clark’s Completion of a given logic program is an old concept that has
been intensively explored in logic programming literature in order to identify
basic properties of logic programming semantics with negation as failure [1, 6].
It is defined as follows: Given a normal logic program P , its completion Comp(P )
is obtained in two steps:

1. Each normal clause a0 ← a1, . . . , aj , not aj+1, . . . , not an ∈ P is replaced
with the formula: a0 ← a1 ∧ . . . ∧ aj∧ ∼ aj+1 ∧ . . .∧ ∼ an.

2. For each symbol a ∈ LP , let Support(a) denotes the set of all formulae with a
in the head. Suppose Support(a) is the set: {a← Body1, . . . , a← Bodym}, in
which each Bodyi(1 ≤ i ≤ m) is of the form a1∧. . .∧aj∧ ∼ aj+1∧. . .∧ ∼ an.
Replace Support(a) with the single formula: a↔ Body1 ∨ . . . ∨Bodym.
If Support(a) = ∅ then replace it by ∼ a.

2.2 Translating a Logic Program into an Integer Program

In this section we will show a method defined in [3] to translate Comp(P ) into
a mixed integer program which then is used to compute the minimal models of
Comp(P ). Thus it is required some definitions.

Definition 1. [3]

1. A variable X is called binary variable if it can only take on a value of either
0 or 1.

2. For all A ∈ BL, let XA be a binary variable corresponding to A. The set
{XA|A ∈ BL} is called a binary variable representation of BL.

If L is a ground literal, we use XL as short-hand for the binary variable XA

if L is the positive ground atom A, and for the expression (1 −XA) if L is the
negative atom not A.

Definition 2. [3]

1. A binary variable assignment is a mapping S : {XA|A ∈ BL} → {0, 1}.
2. Let I be an interpretation. Define the binary variable assignment SI corre-

sponding to I as follows:

for all A ∈ BL, SI(XA) =
{

1 if A ∈ I;
0 otherwise.

Definition 3. [3] Suppose we consider the ground clause C below:

A← B1, · · · , Bn, not D1, · · · , not Dm.

We use if(C) to denote the linear constraint:

XA ≥ 1− (

n∑
i=1

(1−XBi))− (

m∑
j=1

XDj ).

Given a logic program P , we use the notation if(P ) to denote the set {if(C)|C ∈
grd(P )}.

59

Preferred Extensions as Minimal Models of Clark's Completion Semantics

Research in Computing Science 68 (2013)



Definition 4. [3] Let P be a normal logic program and C be a formula in
Comp(grd(P )).

1. If C is of the form: ¬A, then the constraint version of C, denoted by lc(C),
is: XA = 0.

2. if C is of the form: A↔ E1 ∨ · · · ∨Ek where Ei ≡ Li,1 & · · · & Li,mi for all
1 ≤ i ≤ k, and none of the Ei’s is ”true”, then the constraint vesion lc(C)
of C is given by the set of constraints {if(A ← Ei)|1 ≤ i ≤ k} (called ”if-
constraints”) together with the additional set of constraints (called ”only-if”
constraints):

XA ≤ Y1 + · · ·+ Yk

where, for all 1 ≤ i ≤ k, Yi is a binary variable defined by the following
constraints:

Yi ≤ XAi,1

· · ·

Yi ≤ XAi,mi

Yi ≥ 1−
mi∑
j=1

(1−XAi,j
)

where Ei = Li,1 & · · · & Li,mi .
3. For the special case when C is of the same form as above and some Ei,

1 ≤ i ≤ k is empty, lc(C) is simply: XA = 1.

The solutions to the above set of constraints with binary variables, corre-
sponds to the Herbrand models of Comp(grd(P )). The process we just followed
leads us to Definition 5 and Theorem 1.

Definition 5. [3] Let P be a logic program. The constraint version of P, denoted
by lc(P ), is the set of constraints versions of all formulas in Comp(grd(P )).

Theorem 1. [3] Let P be a logic program, let I be an interpretation, and let
SI be the binary variable assignment as defined in Definition 2. Then, SI is a
solution of lc(P ) iff I is a model of Comp(grd(P )).

Theorem 1 says that using lc(P ) to compute the Herbrand models of Comp(P )
(the models that make that all the clauses in Comp(P ) hold) is sound and com-
plete, however, Comp(P) might not be consistent, therefore we need the following
corollary:

Corollary 1. [3] Let P be a logic program. Then Comp(P ) has an Herbrand
model iff lc(P) has a solution.

Theorem 2. [3] Let P be a logic program, let M be a model of Comp(grd(P )),
and let SM be a binary variable assignment corresponding to M as defined in
Definition 2. Then, SM is an optimal solution of lc(P ) minimizing

∑
A∈BL

XA,
iff M is a card-minimal model of Comp(grd(P )).

60

Mauricio Osorio, Alejandro Santoyo

Research in Computing Science 68 (2013)



Corollary 2. [3] Let P be a logic program, M be an herbrand interpretation,
and SM be the binary variable assignment corresponding to M as defined in
Definition 2. If SM is an optimal solution of lc(P ) that minimizes

∑
A∈BL

XA,
then M is a minimal (w.r.t. set inclusion) Herbrand model of Comp(P ).

2.3 Argumentation Theory

Now, we define some basic concepts of Dung’s argumentation approach. The first
one is an argumentation framework.

Definition 6. [7] An argumentation framework is a pair AF := 〈AR, attacks〉,
where AR is a finite set of arguments, and attacks is a binary relation on AR,
i.e. attacks ⊆ AR×AR.

Any argumentation framework can be regarded as a directed graph. For
instance, if AF := 〈{a, b}, {(a, b), (b, a)}〉, then AF is represented as it is shown
in Figure 1. We say that a attacks b (or b is attacked by a) if attacks(a, b) holds.

Let us observe that an argumentation framework is a simple structure which
captures the conflicts of a given set of arguments. In order to select coherent
points of views from a set of conflicts of arguments, Dung introduced a set
of patterns of selection of arguments. These patterns of selection of arguments
were called argumentation semantics. Dung defined his argumentation semantics
based on the basic concept of admissible set :

Definition 7. [7] A set S of arguments is said to be conflict-free if there are no
arguments a, b in S such that a attacks b. An argument a ∈ AR is acceptable
with respect to a set S of arguments if and only if for each argument b ∈ AR: If b
attacks a then b is attacked by S. A conflict-free set of arguments S is admissible
if and only if each argument in S is acceptable w.r.t. S.

By considering the concept of admissible set, in [7], Dung introduced four
basic argumentation semantics.

Definition 8. [2] Let AF := 〈AR, attacks〉 be an argumentation framework
and S ∈ AR. We introduce a function F : 2AR → 2AR such that F (S) =
{A | A is defended by S}.

Definition 9. [2] Let AF := 〈AR, attacks〉 be an argumentation framework and
S be a conflictfree set of argument. S is said to be a complete extension iff S =
F(S).

Definition 10. [2] 1 Let AF := 〈AR, attacks〉 be an argumentation framework.
An admissible set of argument S ⊆ AR is preferred if and only if S is a maximal
(w.r.t. inclusion) complete extension of AF .

1 This definition differs from the Dung’s original, and in fact it is a characterization
that it was proved to be equivalent

61

Preferred Extensions as Minimal Models of Clark's Completion Semantics

Research in Computing Science 68 (2013)



Since the first argumentation semantics were introduced in [7], Dung’s ar-
gumentation semantics have given place to different formal studies about the
properties of them. One of these formal studies has been to regard them as formal
non-monotonic reasoning. In this setting, one can find that the argumentation
semantics are closely related to logic programming semantics with negation as
failure. In the following sections, we will study the preferred extension and a
particular relationship with logic programming semantics with negation as fail-
ure.

2.4 Mapping from Argumentation Frameworks to Logic Programs

The first step for studying the structure of an argumentation framework as a
logic program is to get the logic program that represents such a structure. To this
end, we will present the method defined in [13] to map from an argumentation
framework into a logic program. Let us observe that this mapping basically is a
declarative representation of an argumentation framework by having in mind the
ideas of conflict-freeness and reinstatement which are the basic concepts behind
the definition of admissible sets.

In this mapping, the predicate def(x) is used, the intended meaning of def(x)
is “x is a defeated argument” which means that x cannot be part of an admissible
set. A transformation function w.r.t. an argument is defined as follows.

Definition 11. Let AF := 〈AR,Attacks〉 be an argumentation framework and
a ∈ AR. We define the transformation function Π(a) as follows:

Π(a) =
⋃

b:(b,a)∈Attacks

{def(a)← not def(b)}∪

⋃
b:(b,a)∈Attacks

{def(a)←
∧

c:(c,b)∈Attacks

def(c)}

The transformation function Π with respect to an argumentation framework AF
is defined as follows:

Definition 12. Let AF := 〈AR, attacks〉 be an argumentation framework. We
define its associated normal program as follows:

ΠAF :=
⋃

a∈AR

{Π(a)}.

As one can see in ΠAF , the language of ΠAF only identifies the arguments
which can be considered as defeated. By considering total interpretations, as
the ones suggested by logic programming semantics as stable model semantics
[10], we can assume that any argument which is not defeated in a model of
ΠAF will be acceptable. This means that given an argumentation framework
AF = 〈AR,Attacks〉 if M is a model of ΠAF , then any atom def(x) which is

62

Mauricio Osorio, Alejandro Santoyo

Research in Computing Science 68 (2013)



false in M will identify an argument x which is acceptable. This assumption
suggests a normal clause of the following form:

acc(x)← not def(x).

where acc(x) denotes that the argument x can be considered as accepted. This
clause essentially fixes as acceptable any argument which is not fixed as defeated
in ΠAF .

3 Preferred Extensions as Logic Programming Semantics

This section presents the characterization of the preferred extension in terms
of the minimal models of Clark’s completions, which allows us to propose that
integer programming could be used for computing the preferred extension of an
argumentation framework, and even other argumentation framework semantics
such as the complete extensions.

Please note that while argumentation frameworks extensions are defined in
terms of accepted arguments, this work was developed in terms of the defeated
ones.

3.1 Preferred Extensions as Minimal Models of Clark’s Completion

The first step is to map a given argumentation framework AF into a logic pro-
gram ΠAF , and then characterize it as complete extensions in terms of logic
models introduced in [4], to this end consider the following proposition:

Proposition 1. [4] Let 〈AR, attacks〉 be an argument system. A set S ⊆ AR is
a complete extension iff S is a model of the formula∧

a∈AR

((a→
∧

b:(b,a)∈attacks

¬b) ∧ (a↔
∧

b:(b,a)∈attacks

(
∨

c:(c,b)∈attacks

c))).

Using this proposition and the following definition:

Definition 13. [13] Let AF := 〈AR, attacks〉 be an argumentation framework.
Let A ⊆ AR, then m(A) = {def(x) | x ∈ AR \A}.

It was proved the correspondence between complete extensions and models of
Comp(ΠAF ). This relationship was formalized by the following Theorem:

Theorem 3. [13] Let AF := 〈AR, attacks〉 be an argumentation framework. Let
A ⊆ AR,A is a complete extension of AF , iff m(A) is a model of comp(ΠAF ).

Once more note that m(A) is defined in terms of defeated arguments instead of
the accepted ones, i.e. if m(A) is a model of comp(ΠAF ), then it is not directly
a complete extension but its complement. Thus, we have the following corollary:

63

Preferred Extensions as Minimal Models of Clark's Completion Semantics

Research in Computing Science 68 (2013)



Corollary 3. Let AF := 〈AR, attacks〉 be an argumentation framework. Let
A ⊆ AR,A is a maximal complete extension of AF , iff m(A) is a minimal
model of comp(ΠAF ).

Proof. Since m(A) is defined in terms of defeated arguments instead of the ac-
cepted ones, then to a maximal complete extension corresponds a minimal model
of comp(ΠAF ).

Now, considering Corollary 3 we have the following theorem:

Theorem 4. Let AF := 〈AR, attacks〉 be an argumentation framework. Let
A ⊆ AR, A is a preferred extension of AF , iff m(A) is a minimal (w.r.t. set
inclusion) model of comp(ΠAF ).

Proof. .

– From Theorem 3 we know that A is a complete extension of AF , iff m(A) is
a model of comp(ΠAF ).

– From Definition 10 we know that a model A is a preferred extension, iff A
is also a maximal (w.r.t. inclusion) complete extension of AF

– From Corollary 3 we know that A is a maximal complete extension of AF ,
iff m(A) is a minimal model of comp(ΠAF ).

– Therefore, A is a preferred extension of AF , iff m(A) is a minimal (w.r.t.
set inclusion) model of comp(ΠAF ).

Example 1. In order to illustrate the proof, we will determine the preferred ex-
tensions of the argumentation framework depicted in Figure 1.
1.- Mapping this argumentation framework AF into a logic program, we get
ΠAF as follows:

defeated(b)← not defeated(a). defeated(b)← >.
defeated(a)← not defeated(b). defeated(a)← >.

2.- Then we get comp(ΠAF ):
defeated(a)↔ not defeated(b) ∨ defeated(a)
defeated(b)↔ not defeated(a) ∨ defeated(b)

3.- The models of comp(ΠAF ) are: {a}, {b}, {}, therefore they also are complete
extensions of AF (Theorem 3).
4.- A maximal (w.r.t. inclusion) complete extensions is also a preferred extension
(Definition 10), therefore the models {a}, {b} are also preferred extensions.
5.- However, considering that we worked with defeated arguments, we should
take into account the minimal models of comp(ΠAF ) which are the maximal
models’ complement (Corollary 3). In our case the complement of {a} is {b},
and the complement of {b} is {a}.
6.- Therefore {b} and {a} are the preferred extension of AF (Theorem 3).

The characterization of preferred extensions of an argumentation framework
in terms of minimal models of Clark’s completions, and the method defined by
Bell et al. for computing such minimal models can be put together in a method
for computing preferred extensions by integer programming, as stated in the
following corollary:

64

Mauricio Osorio, Alejandro Santoyo

Research in Computing Science 68 (2013)



Fig. 1. Graph representation of AF := 〈{a, b}, {(a, b), (b, a)}〉.

Corollary 4. Let AF := 〈AR, attacks〉 be an argumentation framework, let P
be the logic program mapped from AF , and let M be an Herbrand interpreta-
tion, and SM be a binary variable assignment corresponding to M as defined in
Definition 2. If SM is an optimal solution of lc(P ) that minimizes

∑
A∈BL

XA,
then M is a minimal (w.r.t. set inclusion) Herbrand model of comp(P ), and a
preferred extension of AF .

Proof. Direct from Definition 2 and Theorem 4.

4 Computing Argumentation Framework Extensions
with Integer Programming: An Ongoing Research

In this section we present a technical result in a proof of concept of Corollary
4, however, the purpose of this section is not to make a detailed description
of the experiment we made, but to make a little reflection about a new possi-
ble method for computing argumentation framework extensions. However, even
though the results are not conclusive and the experiment is not finished, it is
worth commenting this experiment.

In order to have a measure of the performance of the method based on
integer programming for computing the preferred extension of an argumentation
framework, we considered that it would be important to compare it against other
method, and we chose the method based on Answer Set Programming (ASP)
encodings.

The integer programming method used the ad-hoc Xpress2 solver to solve
the integer program associated to each argumentation frameworks instance, and
for the method based on ASP it was used DLV3.

4.1 Computing Preferred Extension using Mixed Integer
Programming

To carry out the experiment it was necessary to develop some pieces of software,
which were used according to the following procedure:

1. We developed a java program to map AFi instances into logic programs
ΠAFi

.

2 http://www.fico.com/en/Products/DMTools/Pages/FICO-Xpress-Optimization-
Suite.aspx

3 http://www.dlvsystem.com/

65

Preferred Extensions as Minimal Models of Clark's Completion Semantics

Research in Computing Science 68 (2013)



2. We also developed a C++ program to compute the completion of each ΠAFi

generated in previous step, to get comp(ΠAFi
).

3. The same C++ program was used to generate lc(ΠAFi
).

4. The same C++ program also generated, for each lc(ΠAFi
), a .mos program

which is the language used by Xpress for mathematical programming.
5. Within each .mos program it was included the algorithm described after this

procedure for computing all the minimal models of each lc(ΠAFi
).

6. Each .mos program was executed by Xpress, and the execution times were
recorded within each program.

In order to compute all the minimal models of each integer program it was
used the following algorithm, and the execution times were recorded immediately
after computing all of them.

Algorithm: Minimal Models of Comp(P )
Let P be a logic program and lc(P ) be constructed as described in Section ??. In
the following, S is intented to contain all minimal models of Comp(P ) and AC
is a set of additional constraints.

1. Set S and AC to Ø.
2. Solve the integer program: Minimize

∑
A∈BL

XA subject to lc(P ) ∪AC.
3. If no optimal solution can be found, halt and return S as the set of minimal

models.
4. Otherwise, let M be the model corresponding to the optimal solution found

in step 2. Add M to S.
5. Add the constraint

∑
A∈M XA ≤ (k− 1) to AC, where k is the cardinality of

M . Then go to step 2.

The sixty instances used for the experiment ranged from 20 to 50 nodes, and
they were taken from the Database and Artificial Intelligence Group Web Page4.

4.2 Computing Preferred Extension using Answer Set Programming
Encodings

For the method based on ASP, which is a declarative programming paradigm
under the stable models semantics [9], we used the encodings in [8], where Egly et
al. presented the system ASPARTIX for reasoning problems in different types of
argumentation frameworks by means of computing the answer sets of a datalog
program.

ASPARTIX was developed in DLV and is capable to compute several exten-
sions, among them the preferred extensions. For space reasons we can not show
the answer set program used to compute the preferred extensions, however the
program is available at ASPARTIX’s web page5.

With regard to the experiment, the DLV solver was used for processing each
instance, and the execution times were recorded after computing all the minimal
models associated to each instance by a C++ program.

4 http://www.dbai.tuwien.ac.at/proj/argumentation/cegartix/#download
5 http://www.dbai.tuwien.ac.at/research/project/argumentation/systempage/

66

Mauricio Osorio, Alejandro Santoyo

Research in Computing Science 68 (2013)



Fig. 2. Graph with Xpress and DLV execition times.

4.3 Proof of Concept Results

Figure 4.3 depicts the results we had in this proof of concept stage, and even
though we could not include the table with detailed information, the figure is
pretty clear, Xpress outperformed DLV. Remember that the main point at this
stage was to find out if an ad-hoc integer programming solver can be used for
computing preferred extensions of given argumentation framework, therefore the
results are not conclusive since the research is not ended.

Thus, at this stage, these results allows us to think that we can go further,
in order to be able to draw definitive conclusions.

Maybe the reader can ask why a new method and why integer programming.
Well, we should consider that the integer programming method provide a mathe-
matical representation of a given problem, and that integer programming solvers
have a long history of development and achievements. Therefore we can infer
that this method could become a good alternative for computing argumentation
framework extensions.

On the other hand, even if we got just encouraging results, we think that this
work represents a good starting point, since it also constitutes a new possible
method for computing preferred extensions of argumentation frameworks.

Please, note the importance of this work lies not on the number of theorems
or the difficult to reach them, but to make note that the known connection
between logic programming and mathematical programming can be used for
argumentation frameworks.

5 Conclusions and Future Work

Since Dung introduced his abstract argumentation approach, he proved that his
approach can be regarded as a special form of logic programming with nega-
tion as failure. In this paper we have showed that preferred extensions can be

67

Preferred Extensions as Minimal Models of Clark's Completion Semantics

Research in Computing Science 68 (2013)



characterized in terms of minimal models of Clark’s completion semantics, by
considering a unique mapping of an argumentation framework AF into a logic
program.

It is worth mentioning again, that these kind of results also help to under-
stand the close relationship between two successful approaches of nonmonotonic
reasoning: argumentation theory and logic programming with negation as failure.

On the other hand, these results helped to build a bridge between argumen-
tation framework semantics and integer programming, but it is required to make
an exhaustive experiment to determine the real potential of this method.

References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, Cambridge (2003)

2. Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation se-
mantics. Knowledge Eng. Review 26(4), 365–410 (2011)

3. Bell, C., Nerode, A., Ng, R.T., Subrahmanian, V.S.: Mixed integer programming
methods for computing nonmonotonic deductive databases. Journal of the ACM
41(6), 1178–1215 (1994)

4. Besnard, P., Doutre, S.: Checking the acceptability of a set of arguments. In:
Tenth International Workshop on Non-Monotonic Reasoning (NMR 2004). pp.
59–64 (June 2004)

5. Carballido, J.L., Nieves, J.C., Osorio, M.: Inferring Preferred Extensions by Pstable
Semantics. Iberoamerican Journal of Artificial Intelligence (Inteligencia Artificial)
ISSN: 1137-3601, (doi: 10.4114/ia.v13i41.1029) 13(41), 38–53 (2009)

6. Clark, K.L.: Logic and Databases, chap. Negation as Failure, pp. 293–322. Plenum
Press (1978)

7. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelligence
77(2), 321–358 (1995)

8. Egly, U., Alice Gaggl, S., Woltran, S.: Answer-set programming encodings for
argumentation frameworks. Argument & Computation 1(2), 147–177 (2010),
http://www.tandfonline.com/doi/abs/10.1080/19462166.2010.486479

9. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. pp.
1070–1080. MIT Press (1988)

10. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing 9, 365–385 (1991)

11. Nieves, J.C., Osorio, M., Cortés, U.: Preferred Extensions as Stable Models. Theory
and Practice of Logic Programming 8(4), 527–543 (July 2008)

12. Osorio, M., Navarro, J.A., Arrazola, J.R., Borja, V.: Logics with Common Weak
Completions. Journal of Logic and Computation 16(6), 867–890 (2006)

13. Osorio, M., Nieves, J.C., Santoyo, A.: Complete extensions as clark’s completion
semantics. Accepted paper in ENC 2013 (2013)

68

Mauricio Osorio, Alejandro Santoyo

Research in Computing Science 68 (2013)


